ENGINEERING CHECKS DD 963 CLASS ## AUXILIARIES (AX) PRE-UNDERWAY PHASE | 5811 | ANCHOR | WINDLASS (Inpor | t Drop Test) | |---|--|-----------------|--------------| | Component/Sub-Con | nponent | Proposed | Accepted | | | | Procedure | Procedure | | Inspect Tech Manual Support | | | | | Inspect PMS Support | | | | | Inspect posted operating/safet | y instructions | | | | and lubrication data | | | | | Inspect fluid samples | | | | | Inspect for proper HPU fluid | | | | | Inspect for proper lubrication | of mechanical | | | | components | | | | | Inspect Gauge Calibration | | | | | Inspect relief valve data is pro | | | | | Inspect all flex hoses are prop | erly tested and | | | | labeled | | | | | Inspect mechanical brake open | ator linkages | | | | Inspect stroke control linkages | S | | | | Inspect flange shields | | | | | Inspect for adequate nitrogen | charge for | | | | windlass | | | | | Inspect speed limiter | | | | | Inspect for adequate LP air pr | essure for chain | | | | compressor | | | | | Inspect capstan/wildcat brake | | | | | mechanical brake components | (worm gear end | | | | cap as required). | | | | | Inspect electric brake | | | | | Inspect filter differential indic | | | | | Inspect HPU mechanical seal | | | | | * * | Test Compensating Relief Valve is properly | | | | set | | | | | Test - Conduct Inport Anchor Drop test | | | | | - Inspect Servo/Replenishment Pressures | | | | | during wildcat operation | | | | | - Inspect Chain Compressor operation | | | | | - Inspect Anchor drops from the hawsepipe | | | | | - Test electric brake operation | | | | | - Inspect reduction gear lubrication | | |--|--| | (gauges/sight flows/dipsticks) | | | Test crossover valve operation | | | Test wildcat/windlass solenoid switch | | | Test Main Relief Valve lifts correctly | | | 5600 / 5611 | STEERING (I | nport System Ve | rification) | |---|----------------------|-----------------------|-----------------------| | Component/Sub-Component | | Proposed
Procedure | Accepted
Procedure | | Inspect Tech Manual and EOS | S Support | | | | Inspect PMS Support | | | | | Inspect operating/safety instruc | | | | | system/electrical wiring diagram | ms are posted | | | | Inspect proper fluid levels | | | | | Inspect hydraulic oil fill connec | ctions are properly | | | | labeled | | | | | Inspect fluid samples | | | | | Inspect Gauge Calibration | | | | | Inspect rudder stock grounding | straps | | | | Inspect filter indicators | | | | | Inspect Servo/Replenishment P | ressures are correct | | | | Inspect all flex hoses are prope | rly tested/labeled | | | | Inspect flange shields are prope | erly installed | | | | Test N2 accumulators are property | erly charged | | | | Test the trick wheel stops | | | | | Inspect the crush block clearan | ces | | | | Test the rudder follow up error | | | | | 0 to 5 deg; 5 deg increments at | 5 to 25 deg) | | | | Test ABT operation | | | | | Test compensator relief valve s | ettings | | | | Test main relief valve settings | | | | | Test (inport) rudder swing chec | eks | | | | Test (inport) blocking valve | | | | | Test auxiliary emergency steer | ng pump | | | | Test manual emergency steering system | | | | | Inspect ram for scoring | | | | | Test steering casualty alarm | | | | | Test pump remote operation and transfer of controls | | | | | to pilot house | | | | | Test for static rudder split (pilo | | | | | Test for indicator error (pilot he | ouse in control) | | | | 5512 / 5513 / 5515 LOW and MEI | DIUM PRESSURE AIR SYSTEM | |--|---------------------------------------| | Component/Sub-Component | Proposed Accepted Procedure Procedure | | Inspect Tech Manual and EOSS Support | | | Inspect PMS Support | | | Inspect Gauge Calibration | | | Inspect operating/safety instructions are posted | | | Inspect compressor oil level and oil samples | | | Test compressor pressures and temperatures | | | Test compressor capacity control system | | | Inspect compressor belt condition | | | Test compressor auto control and safety switches | | | a. Operational control switches (115/120/125) | | | b. Low oil pressure | | | c. High discharge pressure | | | d. High air and water temp | | | Inspect all relief valve testing is within periodicity | / | | Inspect location of intake/vent supply | | | Inspect receiver flask certification | | | Test priority valve operation | | | Inspect sea water cooling system | | | Inspect 50/50 mixture of ethylene glycol | | | Test type I and type II dehydrator operation | | | a. Gauge calibration | | | b. Tower operation | | | c. Purge air pressure | | | d. Automatic drain operation | | | e. Dew point | | | f. Inspect PMS and Tech Manual support | | | 5511 / 5515 | HIGH PRESSURE AIR SYSTEM | | | |--|--------------------------|-----------------------|--------------------| | Component/Sub- | -Component | Proposed
Procedure | Accepted Procedure | | Inspect Tech Manual and EC | SS Support | | | | Inspect PMS Support | | | | | Inspect Gauge Calibration | | | | | Inspect operating/safety instr | uctions are posted | | | | Inspect compressor oil level | and oil samples | | | | Test compressor auto control | and safety switches | | | | a. Start / Stop switch | | | | | b. Low oil pressure swite | ch | | | | c. Jacket water temp swi | tch | | | | d. Compressor temp/pres | ssure monitor operation | | | | Inspect compressor pressures | and temperatures | | | | Inspect compressor drive bel | t condition | | | | Inspect condensate monitorir | ng/drain system | | | | Inspect all flex hoses are pro- | perly tested/labeled | | | | Inspect all relief valve testing | g is within periodicity | | | | Inspect HP air flask certificat | tion | | | | Inspect sea water cooling sys | tem | | | | Inspect air intake/ventilation | supply location | | | | Inspect all HP/LP air reducin | g stations | | | | Inspect fresh water pump belts | | | | | Inspect capacity | | | | | Inspect oil wipers | | | | | Inspect pressure regulator valve | | | | | Inspect 50/50 mixture of ethylene glycol | | | | | Inspect seals for oil leaks | | | | | 5210 | FIRE PUMPS (ELECTRIC and STEAM) | | | |---|---------------------------------|-----------------------|--------------------| | Component/Sub-C | omponent | Proposed
Procedure | Accepted Procedure | | Inspect Tech Manual and EOSS | S Support | | | | Inspect PMS Support | | | | | Inspect Gauge Calibration | | | | | Inspect Transducer Calibration | | | | | Inspect Coupling Guard | | | | | Inspect relief valves are within | periodicity | | | | Test remote start/stop functions | } | | | | Test local start/stop functions | | | | | Inspect pump operation/design unusual noise, bearing temps, e | | | | | Test the over speed trip (STEA | | | | | Test the speed limiting governo | | | | | Test the turbine auxiliary lube of automatic start switch operation | oil pump low-pressure | | | | Inspect lube oil filter indication (STEAM) | , | | | | Test combination exhaust and r | elief valve (STEAM) | | | | Inspect the packing and mechan | nical seal leakage | | | | Inspect for ferrous fasteners | | | | | Inspect the resilient mounts | | | | | Inspect condition of expansion joints | | | | | Inspect all flex hoses are properly tested/labeled | | | | | Inspect piping lagging | | · | | | Inspect grounding straps | | | | | Test remote operated suction/discharge valves | | · | | | Inspect the suction strainer | | | | | 5240 | SEAWATER | SERVICE PUM | IPS | |---|------------------------|-------------|----------| | Component/Sub-C | omponent | Proposed | Accepted | | | | Procedure | Procedur | | | | | e | | Inspect Tech Manual and EOSS | S Support | | | | Inspect PMS Support | | | | | Inspect Gauge Calibration | | | | | Inspect Transducer Calibration | | | | | Inspect Coupling Guard | | | | | Test remote start/stop functions | } | | | | Test local start/stop functions | | | | | Inspect pump operation/design | discharge pressure, | | | | unusual noise, bearing temps, etc. | | | | | Inspect packing and mechanica | l seal leakage | | | | Inspect for ferrous fasteners | | | | | Inspect foundation and resilient | t mounts | | | | Inspect condition of expansion | | | | | Inspect all flex hoses are proper | rly tested/labeled | | | | Inspect piping lagging | | | | | Inspect grounding straps | | | | | Test remote operated suction/discharge valves | | | | | Inspect the suction strainer | | | | | Test the firemain to seawater re | | | | | operation, condition and relief | valve test periodicity | | | | 5140 | AIR CONDITIONING PLANTS | | | |--|-------------------------|-----------|-----------| | Component/Sub- | -Component | Proposed | Accepted | | | • | Procedure | Procedure | | Inspect EPA certifications | | | | | Inspect Tech Manual and EC | OSS Support | | | | Inspect PMS Support | | | | | Inspect Gauge Calibration | | | | | Inspect operating/safety instr | ructions are posted | | | | Inspect compressor oil level | and oil samples | | | | Inspect warning at entrance (| Freon usage) posted | | | | Inspect Refrigerant logs | | | | | Test halocarbon monitor of | peration | | | | Test capacity control system | operation | | | | Test calibration of safety shu | tdowns/alarms | | | | a. HP/LP pressure switch | nes | | | | b. C/W, S/W flow/press/ | temp switches | | | | c. Low refrigerant temp | switch | | | | d. Low oil pressure switc | h | | | | Inspect moisture indicators | | | | | Test compressor operation (p | parameters, suct/disch | | | | valves) | | | | | Test for leaks (oil/freon/wate | er) | | | | Inspect chilled water pump | | | | | a. suction valve | | | | | b.
discharge valve | | | | | c. mechanical seal | | | | | Inspect chilled water expansi | | | | | a. Proper operating leve | 1 | | | | b. Filling pipe air gap | | | | | c. Relief valves and vac | uum breakers | | | | d. Hose disconnects and | warning sign | | | | Test PPU | | | | | Inspect recovery unit (Invent | • | | | | Inspect for available vacuum | pump | | | | Inspect sea water system | | | | | a. Pump operation | | | | | b. Zincs and nylon tube inserts present | | | | | c. Condenser header condition | | | | | d. Seawater Regulating valve | | | | | Inspect motor controller | | | | | Inspect coupling guard | | | | | Inspect resilient mounts | | | | # AUXILIARIES (AX) UNDERWAY DEMO PHASE | 5811 | ANCHOR WINDLASS DROP AND RETRIEVAL DEMONSTRATION | | | |---|--|-----------------------|-----------------------| | Component/Sub-Component | | Proposed
Procedure | Accepted
Procedure | | Test – Conduct Anchor Drop and Retrieval test | | | | | - Inspect Servo/Replenishment and Main
Relief Pressures during wildcat operation | | | | | - Inspect Anchor drops from the | ne hawsepipe | | | | 5600 / 5611 | STEERING DEMONSTRATION | | TION | |---|------------------------|-----------|-----------| | Component/Sub-C | omponent | Proposed | Accepted | | | | Procedure | Procedure | | Inspect proper fluid levels | | | | | Inspect correct Servo/Replenishment pressures | | | | | Test - Demonstrate timed rudder swing checks/ | | | | | blocking valve test Ahead (as per provided | | | | | procedure) | | | | | Test - Demonstrate timed rudder swing checks/ | | | | | blocking valve test Astern (as per provided | | | | | procedure) | | | | | Inspect for dynamic rudder spli | t from helm indicator | | | | 5331 | WATER HEATERS | | | |---|------------------------|-----------|-----------| | Component/Sub- | -Component | Proposed | Accepted | | | | Procedure | Procedure | | Inspect Tech Manual and EC | SS Support | | | | Inspect PMS Support | | | | | Inspect list of heaters onboar | d and spaces hot water | | | | services (berthing/laundry/ga | ılley) | | | | Inspect gauge calibration | | | | | Inspect outlet temp at heater | (verify operation) | | | | Inspect relief valve test data | | | | | Inspect relief valve drain piping | | | | | Inspect cold water inlet pipe | for check valve | | | | Test high temp switch setting | | | | | Test high temp switch warning | ng light | | | | Inspect lagging condition | | | | | Inspect for steam / water leaks | | | | | Inspect Temp Reg Valve for locking device | | | | | Inspect heater foundation | | | | | Test water temp at basin/spig | got | | | | 5351 | | ER and COPPE
STEAM PIPING | | |--|-------------|------------------------------|--------------------| | Component/Sub-Compo | nent | Proposed
Procedure | Accepted Procedure | | Inspect Gauge calibration | | | | | Inspect PMS Support | | | | | Inspect warning placard posted – war pressure before disconnecting | rning bleed | | | | Inspect piping/valve condition and or | peration | | | | Inspect protective cover | | | | | Inspect relief valve for test data | | | | | Inspect overall area preservation | | | | | | | | | | Inspect ship has reviewed NAVSEA Wash DC R 130557Z FEB 01 concerning copper piping | | | | | Inspect the ship has established an inspection program IAW NAVSEA message | | | | | Inspect - Conduct a walkthrough of all copper service steam piping to check for leaks IAW NAVSEA message | | | | | 5315 | WATER PRODUCTION
DEMONSTRATION – REVERSE OSMOSIS | | | |--|---|-----------------------|--------------------| | Component/Sub-Compon | ent | Proposed
Procedure | Accepted Procedure | | Inspect Tech Manual Support | | | | | Inspect PMS Support | | | | | Inspect relief valves are within period | icity | | | | Inspect HP pump oil level | | | | | Inspect flexible hose condition and tes | st tag | | | | Test salinity dump valves | | | | | Test salinity panel | | | | | Inspect Accumulator Pressure | | | | | Test the operation of the product and l | brine | | | | flowmeters | | | | | Test - Demonstrate 80% water production capability | | | | | during the 4 Hour Water Production I | | | | | - Inspect RO to ensure the unit has no | | | | | produce above maximum recommende | | | | | (discharge pressure setting, production | | | | | injection temperature diagram curve and tables) | | | | | - Inspect the operating panel for alarm / unusual | | | | | conditions. | | | | | - Inspect 3 and 20 micron filter differential pressure | | | | | - Inspect all fittings and connections for leaks | | | | | - Inspect demineralizer operation | | | | | Inspect freshwater flush | | | | | 5311 | WATER PRODUC
FLAS | CTION DEMON
SH TYPE EVAP | ·- | |--|-----------------------|-----------------------------|--------------------| | Component/Sub-Co | mponent | Proposed
Procedure | Accepted Procedure | | Inspect PMS and Tech Manual s | upport | | | | Inspect gauge calibration | | | | | Test flow meter | | | | | Inspect evaporator shell (sight gland scale buildup) | lasses, diffuser cap | | | | Test salinity dump valves | | | | | Test interlock device between po | otable water and feed | | | | water valves | | | | | Inspect feed pump (labeled, pack | king gland, | | | | foundation, seal / gland cavity) | | | | | Inspect brine pump (labeled, pac | king gland, | | | | foundation, seal / gland cavity) | | | | | Inspect distillate pump (labeled, | packing gland, | | | | foundation, seal / gland cavity) | | | | | Inspect brine pump (labeled, pac | king gland, | | | | foundation, seal / gland cavity) | | | | | Inspect heater drain pump (labeled, packing gland, | | | | | foundation, seal / gland cavity) | | | | | Inspect flexible hose condition and test tag | | | | | Inspect feedwater strainer (foundation and basket) | | | | | Inspect pipe labeling and lagging condition | | | | | Test - Demonstrate 80% water production capability | | | | | during the 4 Hour Water Production Demonstration | | | | | 8543 | DUMBWAITER | | |--|------------|-----------| | Component/Sub-Component | Proposed | Accepted | | | Procedure | Procedure | | Inspect Tech Manual and EOSS Support | | | | Inspect PMS Support | | | | Inspect posted operating/safety instructions at each | | | | station | | | | Inspect posted lubrication chart at top station | | | | Inspect trunk bi-parting doors | | | | Inspect machinery access cover bolts & nuts | | | | Inspect machinery oil level | | | | Inspect hoist machinery mounting hardware | | | | Inspect hoist drum | | | | Inspect hoist wire rope and end fittings | | | | Test slack rope device and limit switch | | | | Test the hoist brake | | | | Test the up over travel limit switch | | | | Test the up deck level limit switch | | | | Test trunk bi-parting door limit switch | | | | Inspect car broken rope device | | | | Inspect car bi-parting door assembly | | | | Inspect car for missing components | | | | Test lower level trunk bi-parting doors and limit | | | | switch | | | | Test down over travel limit switch | | | | Test down level limit switch | | | | Inspect trunk buffer springs | | | | Test E-call and sound powered phone system when | | | | installed | | | | Inspect clean out cover mounting hardware | | | | Inspect motor controller for loose leads, posted | | | | placards, grounds and correct fuses | | | | Inspect dumbwaiter trunk for preservation and | | | | cleanliness | | | | Inspect guide rails | | | | Test each control station E-stop button | | | | 8543 | 8543 PAC | | CKAGE CONVEYOR | | |--|---|-----------|----------------|--| | Component/Sub-Compone | Component/Sub-Component | | Accepted | | | | | Procedure | Procedure | | | Inspect Tech Manual and EOSS Support | ort | | | | | Inspect PMS Support | | | | | | Inspect posted operating/safety instruct | tions (two man | | | | | rule/ do not ride) at each station | | | | | | Inspect posted lubrication chart at top s | | | | | | Test for audible warning when starting | • | | | | | Inspect that all station doors are locked | | | | | | Inspect that all station controllers are lo | ocked | | | | | Test door interlock system | | | | | | Inspect load/unloader at each station | | | | | | Test door cannot close when loader/un | loader is in | | | | | horizontal or 30 deg inclined position | | | | | | Test loader/unloader down interlock sv | vitch at each | | | | | station below upper most level | | | | | | Test jam limit switch at each station | | | | | | Inspect safety shields are properly insta | | | | | | Test up-over travel switch/device operation | | | | | | Test clean out door interlock switch if | • • | | | | | Test down overtravel device and switch | h | | | | | Test indexing feature | | | | | | Test E-stop and run/stop buttons at all | stations | | | | | Inspect proper florescent lighting at each | | | | | | Inspect trunk shielding and mounting h | nardware | | | | | Inspect trunk guide rails | | | | | | Inspect conveyor trunk for preservation | n/cleanliness | | | | | Inspect all carrier trays are installed an | d tight | | | | | Test all station growlers and phone circ | cuits are | | | | | functional and headsets are present | | | | | | Inspect conveyor has been load tested | within the last | | | | | five years to include weight test data | | | | | | Inspect speed reducer is filled to proper level with oil | | | | | | Inspect drive, driven and
carrier chains are properly | | | | | | tensioned | | | | | | Test bite panel for correct components and proper | | | | | | operation | | | | | | Inspect motor controller for loose leads, posted | | | | | | | placards, grounds and correct fuses | | | | | | Inspect drive machinery for missing/loose | | | | | components | | | | | | 5161 | REFRIGERATION PLANTS | | NTS | |---|----------------------|-----------------------|--------------------| | Components/Sub-Con | nponents | Proposed
Procedure | Accepted Procedure | | Inspect EPA certifications | | | | | Inspect Tech Manual and EOSS S | Support | | | | Inspect PMS Support | | | | | Inspect Gauge Calibration | | | | | Inspect operating/safety instruction | ons are posted | | | | Inspect compressor oil level and o | oil samples | | | | Inspect warning at entrance (Free | n usage) posted | | | | Inspect Refrigerant logs | | | | | Test halocarbon monitor opera | tion | | | | Test capacity control system oper | ation (vent plug) | | | | Test calibration of alarm / shutdo | wns | | | | a. HP / LP pressure switches | | | | | b. Sea water flow / pressure | switch | | | | Test compressor operation (paran | neters, | | | | suction/discharge valves) | | | | | Inspect for piping suppressors | | | | | Inspect for leaks (oil/freon/sea wa | nter) | | | | Inspect refrigerant recovery syste | m/vacuum pumps | | | | Inspect sea water system (pump operation, zincs, | | | | | nylon tube inserts, and condenser header) | | | | | Test chill/freezer boxes for fan operation, lighting, | | | | | coil condition and curtains | | | | | Inspect ventilation (flow/location/indicators and | | | | | alarms | | | | | 6641 FA | FAN ROOMS | | |---|-----------------------|--------------------| | Component/Sub-Component | Proposed
Procedure | Accepted Procedure | | Inspect deck condition | | | | - No standing water | | | | - Deck rusted / exfoliated | | | | - Deck drain not installed | | | | - Deck drain missing, not secured within deck socket | | | | or inoperative | | | | Inspect deck/bulkheads have no painted over rust | | | | Inspect lighting is operative and covers installed | | | | Inspect adequate lighting present in space | | | | Inspect vent duct condition | | | | - Access covers present | | | | - Access cover fasteners not rusted/missing | | | | - Duct interior is clean | | | | Inspect correct vent/piping system labeling | | | | Inspect fan motor installed correctly (flow) | | | | Inspect filters are clean and can be easily removed | | | | Inspect filter DP gauge is operative | | | | Inspect vent heating element is operative and not deteriorated | | | | | | | | Inspect cooling coils are clean | | | | Inspect thermostatic controls are calibrated, connected and operational | | | | Inspect the cooling coil drain is piped to the deck | | | | drain and is not clogged | | | | Inspect the proper color coding of piping | | | | Inspect that all hand wheels are present | | | | Inspect for damaged / missing lagging | | | | Test the C/W or steam solenoids are operational | | | | Inspect for chilled water / steam leaks | | | | Inspect for bull's eye and CCOL in space | | | | Inspect for any unauthorized stowed material | | | | Inspect for any unauthorized flammables | | | | Inspect the filter cleaning shop | | | | 5331 | POTABLE WATER PUMPS | | MPS | |---|---------------------|-----------------------|--------------------| | Component/Sub-Comp | ponent | Proposed
Procedure | Accepted Procedure | | | | riocedure | riocedule | | Inspect Tech Manual and EOSS Su | upport | | | | Inspect PMS Support | | | | | Inspect Gauge Calibration | | | | | Inspect Transducer Calibration | | | | | Inspect Coupling Guard | | | | | Test local start/stop functions | | | | | Inspect pump operation/design discharge pressure, | | | | | unusual noise, bearing temps, etc. | | | | | Inspect packing and mechanical se | al leakage | | | | Inspect for ferrous fasteners | | | | | Inspect foundation and resilient mounts | | | | | Inspect all flex hoses are properly | tested/labeled | | | | Inspect grounding straps | | | | # ELECTRICAL (EL) PRE-UNDERWAY PHASE DD 963 | 3113 / 3202 | SHIPS SERVICE GAS TURBINE GENERATORS | | | |--|--|--------------------|--| | CC | DMPONENT/SYSTEM | PROPOSED PROCEDURE | | | Test Dead Bus S | Start Logic | A-9R | | | Test reverse pov | ver relays | R-19 | | | Test Fault currer | nt detect | 18M-7R | | | Test parallel ope | eration | IAW EOP | | | Test manual load | d shedding | 18M-4R | | | | ELECTRICAL PLANT CONT | ROL CONSOLE (EPCC) | | | CC | OMPONENT/SYSTEM | PROPOSED PROCEDURE | | | Perform Process | sor Self-Test | IAW EOP | | | 3143 | 400 HERTZ DISTRIBUTION SYSTEM (CONVERTERS) | | | | COMPONENT/SYSTEM | | PROPOSED PROCEDURE | | | | Test Frequency Changer 60 Hz input circuit A-6 breakers shunt trips. | | | | Test split and pa | Γest split and parallel operation IAW EOP | | | | 4221 | 4221 TELL-TALE PANEL/NAVIGATION SIGNAL LIGHT PANE | | | | CC | OMPONENT/SYSTEM | PROPOSED PROCEDURE | | | Test navigational lighting panel | | R-2 | | | Measure insulation resistance of Navigational Lighting Panel | | S-1 | | | Measure insulation resistance of Signal light Panel | | S-1 | | | 4331 | ANNOUNCING SYSTEMS | | | |-------------------------------------|--------------------------------------|--------------------------|--| | COMPONENT | SYSTEM | PROPOSED PROCEDURE | | | Test general, che stations | mical, and collision alarms from all | Q-1R | | | Test 1MC from a | ll stations | Q-1R | | | Test 5 MC opera | tion | Q-2R | | | Test 6MC operat | ion | Q-1R | | | Measure speaker | group insulation resistance | A-1 | | | Test 21MC opera | ation | Conduct Operational Test | | | 4751 | DEGAUSSIN | G SYSTEM | | | СО | MPONENT/SYSTEM | PROPOSED PROCEDURE | | | Conduct linearity | / test | Q-1 | | | Conduct ground | test. | M-2 | | | Inspect degaussin | ng folder | NAVSEA TECH MANUAL | | | 3202 | AUTOMATIC BUS TRA | NSFER EQUIPMENT | | | СО | MPONENT/SYSTEM | PROPOSED PROCEDURE | | | Test all Engineer | Test all Engineering ABT's. | | | | Test all remainin | g ABT's. (Day 2) | Q-1R / Q-2R | | | 4371 | EVAPOR | ATORS | | | СО | MPONENT/SYSTEM | PROPOSED PROCEDURE | | | Test dump valve | operation | S-2 | | | | | | | | Test alarm settings | | S-2 | | | 4373 | 4373 WIND INDICATING SYSTEM | | | | COMPONENT | SYSTEM | PROPOSED PROCEDURE | | | Test System For Proper Operation R- | | R-1M | | | 5081 | THERMAL IMAGING SURVEY | | |--|------------------------------------|--------------------| | COMPONEN | VT/SYSTEM | PROPOSED PROCEDURE | | Commence Thermal Imaging Throughout The Ship NOTE: Any equipment surveyed that has a temperature rise of 40 degrees centigrade or above (3 or 4 star) must be repaired or tagged out prior to getting underway. The items will not be available until repairs are completed and re-shot for verification | | R-1 / R-2 | | 2521 | UNINTERRUPTED POWER SUPPLIES (UPS) | | | COMPONENT/SYSTEM | | PROPOSED PROCEDURE | | Test EPCC UPS for proper operation | | R-1 | | Test CISE UPS for proper operation | | R-2 | | Test PAMCE UPS for proper operation | | R-2 | | Test PLCEE UPS for proper operation | | R-2 | | Test S/CE 2 or 3 UPS for proper operation | | R-2 | ### ELECTRICAL (EL) UNDERWAY PHASE **NOTE**: Electrical Underway Checks Consist Mainly Of Space Walk-Through Throughout The Ship. In each space inspect the following if applicable: #### (INSPECT) FUSE BOXES | · · · · · · · · · · · · · · · · · · · | | |--|----------------------------| | COMPONENT/SYSTEM | PROPOSED
PROCEDURE | | Are fuses pulled from designated circuits without danger tags affixed? | NSTM 300 - 2.4.1 | | Are there loose or missing locking nuts or gear adrift? | NSTM 300 – 4.8.1 | | Are circuits properly labeled for easy identification? | GSO 305E | | Are there any bent, twisted, misaligned, or broken fuse clips? | NSTM 300 4.8.1 | | Is the interior rusty or dirty? | NSTM 300 – 4.8.1/5.2.4 | | Are fuses of the correct amperage and voltage | GSO 303F | | installed? | NSTM 320 – 1.7.4 | | Are circuits fed from one set of fuses (except battle lantern circuits) multiple? | GSO 331C | | Are fuse clips phosphor-bronze instead of silver plated? | NSTM 300 – 4.8.1.2 | | Were door hinges broken? | 5100.19 SERIES
NSTM 300 | | Are non-silver ferruled fuses installed? | NSTM 300 - 2.5.4 | | Are circuits over fused? | NSTM 300 – 2.5.4 | | Is clearance provided to permit complete accessibility for maintenance, repair, renewal of fuses, and testing? | GS0 300D | #### (INSPECT) BATTLE LANTERNS | COMPONENT/SYSTEM | PROPOSED PROCEDURE | |--|----------------------------------| | Were relay-operated lanterns installed in sufficient number? | NSTM 330 – 1.6.4.3.3.1 | | Are lanterns installed with suitable bracket assemblies to prevent removal of lantern? | NAVSEA 0964-000-2000
NSTM 300 | | Were lanterns inoperative? | NSTM 330 – 3.6.2 | | Were test switches and relay frames grounded? | NSTM 330 – 2.1.8 | | (INSPECT) BATTLE LANTERNS (CON'T) | | |---|------------------------| | COMPONENT/SYSTEM | PROPOSED PROCEDURE | | Were lanterns located in explosion proof enclosures (prohibit)? | NSTM 330
– 1.6.4.3.2.2 | | Were NEALS lanterns installed and were they charged (red indicator)? | NSTM 330 – 1.6.4.3.2 | | Were relay operated lanterns fused? | NSTM 330 – 1.6.4.3.3.3 | | (INSPECT / TEST) SHORE POV | WER SYSTEM | | COMPONENT/SYSTEM | PROPOSED PROCEDURE | | Is shore power being properly rigged? | NSTM 320-2.2.7 | | Did shore power shunt trip interlocks trip its | IAW PMS | | associated breakers when tested? | IAW EOSS | | | GSO 320D | | Was shore power system cabling between the | SPRU | | receptacles and the ship's switchboard insulation | NSTM 300/320 | | resistance within EOSS or PMS Limits | | | Were shore power indicating lights operative, white in color, and all screws installed? | NSTM 320 – 2.2.9 | | Were warning signs posted? | GSO 070H | | Was there pigtail stowage installed? | GSO 320D | | Does the shore power system meet the current | GSO 320D | | standards: | | | Have a Viking Connector System | | | Have AQB-LF400 Amp Circuit Breaker | | | with shunt trip | | | - Have a phase sequencing and phase | | | orientation devices. | | | - Have installed ammeter and selector switch | | | to monitor total shore power current. | | | (INSPECT) CATHODIC PROTEC | TION SYSTEM | |---|--------------------| | COMPONENT/SYSTEM | PROPOSED PROCEDURE | | Was the installed Cathodic Protection System operative and adjusted | GSO 633C | | Were the rudder grounding straps made of 1-1/2 inch | NSTM 633 – 3.3.2.7 | | wide braided copper and brazed to the rudder stock and the hull? | GSO 633C | | Has the system been turned off greater than 15 days? | GSO 633G | | Was brush rigging correctly installed? | NSTM 633- 3.3.2.6 | | Were shaft grounding brushes correctly installed? | NSTM 633 | | | ICCP Tech Manual | | Did shaft grounding brushes exhibit full contact with | NSTM 633 – 3.3.2.6 | | the slip ring? | ICCP TECH MANUAL | | (INSPECT / TEST) ALARM S | SYSTEMS | | COMPONENT/SYSTEM | PROPOSED PROCEDURE | | Test alarm switchboards and panels. | 4351/Q-2 | | Were any alarm and warning systems inoperative or missing parts? | GSO 433J | | (INSPECT) ORDER/INDICATING/ME | TERING SYSTEMS | | COMPONENT/SYSTEM | PROPOSED PROCEDURE | | Were Tank Level Indicators (TLI's) out of calibration or inoperative? | GSO 437 E | | Were valve position indicator circuits misadjusted or inoperative? | GSO 430H | | Were there missing or inoperative salinity cells? | GSO 531B | | | IAW PMS | | MOTOR CONTROLLE | ERS | | COMPONENT/SYSTEM | PROPOSED PROCEDURE | | Were interiors dirty, rusty, deteriorated, or contained | NSTM 302-3.3.2 | | gear adrift? | GSO 320F | | Were wiring diagrams, schematics or overload heater tables missing? | NSTM 302-3.3.1 | | MOTOR CONTROLLERS (CON'T) | | | |--|--|--| | COMPONENT/SYSTEM | PROPOSED PROCEDURE | | | Was controller electrical wiring properly banded? | ELECT PLT. INST. STD
METHODS/GSO 302F | | | Were Start, Stop, "Emergency Run" or Reset buttons seized, missing or inoperative? | 3001/S-1/18M-1 | | | Were rubber boots cracked, torn or missing? | NSTM 300-3.2.2
3001/S-1/18M-1 | | | Were overload relay heaters properly sized and adjusted to provide adequate protection for the motor? | NSTM 302-3.3.2
GSO 302G | | | Were switches protected against inadvertent activation? | GSO 070H | | | Were controllers with multiple power sources properly labeled? | GSO 305C | | | Were motor foundations properly preserved? | GSO 631J | | | Were controllers and remote operating stations properly labeled? | GSO 305C | | | Is clearance provided to permit complete accessibility for operation, maintenance, repair, renewal of fuses, and testing? | GSO 300D | | | WORKBENCHES | | | | COMPONENT/SYSTEM | PROPOSED PROCEDURE | | | - Does the workbench conform to standards set forth in NSTM 300 APP H? (Insulation, ground straps, disconnect switches, labeling, ground connections, etc) | NSTM 300
GSO 320E
GSO 665
GSO 650 | | | (INSPECT) ELECTRICAL SAFETY | | | | COMPONENT/SYSTEM | PROPOSED PROCEDURE | | | Were flat irons a high-grade commercial type with a three pronged cord? | NSTM 300-2.7.3.6
GSO 640G | | | Were Ironing Board Stations in berthing space modified to remove spotlight and fill the access hole? Ensure irons are not hardwired. | GSO 640G | |--|--| | (INSPECT) ELECTRICAL SAF | ETY (CON'T) | | COMPONENT/SYSTEM | PROPOSED PROCEDURE | | Have shorting probes been modified by installing a nylon screw in the end of the probe and soldering the clip to the conductor? | NAVELEX 0101, 110A FIG 1-
3 IAW PMS | | Are portable tools/devices not stamped "Double Insulated" or equipped with a three pronged cord? | NSTM 300-2.7.3.3
IAW PMS | | Were Hospital grade plugs used on portable equipment? | NSTM 300-2.7.3.2.8 | | Were light fixtures, guards, and covers securely mounted? | NSTM 300-4.3.3 | | Were over-sized lamps installed in lighting fixtures? | NSTM 330-2.2.4
NSTM 330-2.2.9 | | Were light fixtures missing lenses, protective guards, or faceplates? | NSTM 330-2.1.4
NSTM 330-2.2.6 | | Did diesel module room have adequate lighting? | GSO 331B
GSO 332E | | Were spray-tight fixtures adequately protected against water intrusion? | NAVSEA 0964-000-2000 | | Was bunk lighting cable hanging, or not routed through the inside of bunk stanchions? | NAVSEA 0964-000-2000 | | (INSPECT) CABLIN | G | | COMPONENT/SYSTEM | PROPOSED PROCEDURE | | Was PVC cabling installed (new construction only)? | GSO 304D | | Were dead-ended cables properly identified/terminated? | NSTM 300-4.6.7
GSO 304E
NSTM 300-4.6.9
DOD-STD-2003-1 | | Were useless or improperly installed cables removed? | NSTM 300-4.6.7.1
GSO 304E | | Was cabling properly supported, routed or were nylon wire ties being utilized? | | | (INSPECT) CABLING (CON'T) | | |--|--| | COMPONENT/SYSTEM | PROPOSED PROCEDURE | | Were cables pulling out of equipment? | GSO 331E | | Were cables improperly spliced? | GSO 304E
NSTM 300-4.6.8
DOD-STD-2003-1 | | Were cables protected against being handholds or being stepped on? | GSO 304E | | Was cabling run through beams without the use of chaffing rings? | NSTM 300 TABLE 300-4-4
GSO 304E | | Was cabling running through metal partitions equipped with grommets? | GSO 304E
NSTM 320-1.6.11 | | Were cable stuffing tubes properly assembled? | NSTM 300-4.6.10.1
NSTM 300 TABLE 300-4-4
NSTM 320-1.6.11
GSO 304E | | Were multiple cables running through one stuffing tube? | GSO 304E
NSTM 300 TAB. 300-4-4 | | Were multi-cable penetrators installed in Flammable Liquid Storerooms? | GSO 304E
MIL-STD-1310 | | (INSPECT) BUS TRANSFER E | QUIPMENT | | COMPONENT/SYSTEM | PROPOSED PROCEDURE | | Were ABT's installed for the following: Emergency Lighting. IC Switchboard and panels. Steering power panel. Pumps associated with the main and auxiliary machinery plant having Low Voltage Release (LVR) control. Fire pumps. Fire extinguishing auxiliaries and controls. | NSTM 320-1.3.2
GSO 320D | | Did ASCO ABT transfer switches have an electrical charge on the metal screw on the manual operator? | NAVSEA FSC SER
03E2/03E2-234 | | Was the sliding interlock on manual bus transfer switches effective at preventing both breakers from being closed at the same time? | NSTM 300-4.8.4.2 | | Are feeder circuit breaker megger holes blanked off? | NAVSEA 230319ZNOV 98 | |--|--| | Were Normal/Alternate source indicating lights operative? | NSTM 320-2.2.6.4 | | (INSPECT) SHIP TELEPHON | E SYSTEM | | COMPONENT/SYSTEM | PROPOSED PROCEDURE | | Was the system unreliable due to unresolved software or hardware deficiencies? | NSTM 430-3
GSO 432 | | Test battery back-up for telephone system | NSTM 313-2.5
GSO 313J | | (INSPECT) MOTOR | S | | COMPONENT/SYSTEM | PROPOSED PROCEDURE | | Were motor foundations properly preserved? | NSTM 300- 5.4.3.10
GSO 631J | | Was resilient mounted electrical equipment groundedto the ships hull through ground straps? | NSTM 300- 2.2.1 | | Did electrical rotating machinery have ball check grease fittings (zerk fittings) installed? | NSTM 244 | | Were coupling, belt, or chain guards effective? | GSO 320E | | POWER PANELS | <u> </u> | | COMPONENT/SYSTEM | PROPOSED PROCEDURE | | Do labels specify the proper information? | GSO 305E | | Do Breaker ratings match the circuit label current rating? | GSO 305E | | Are multi-phase circuits missing breaker connecting handles? | GSO 324C | | Were power panels located inside galley spaces? | GSO 320E | | Is clearance provided to permit complete accessibility? | GSO 300D | | CASUALTY POWER CA | BLES | | COMPONENT/SYSTEM | PROPOSED PROCEDURE | | Were cable ends properly terminated? | GSO 304E
NSTM 320-3.4.1
DOD-STD-2003 | | Were cables deteriorated from age, heat, and humidity? | NSTM 079-47.4.2.2.10 | | Were normally energized power terminals labeled? | NSTM 320-1-2-8-2 | | Were racks properly identified as to number/length of cables assigned to the rack? | GSO
305F | |--|--| | CASUALTY POWER CABLE | S (CON'T) | | COMPONENT/SYSTEM | PROPOSED PROCEDURE | | Is there a label attached at the end of the cable to indicate the length and stowage rack number? | GSO 305F
DOD-STD-2003 | | Are cable leads properly identified for phase identification? | NSTM 320-1.2.8.2 | | Were cable ferrules missing or heavily oxidized? | NSTM 079-47.4.2.2.6 | | Was an improper number/length of cable installed on a cable rack? | NSTM 079-47.5.6.1
GSO 320G | | Were wrenches missing from terminals? | NSTM 079-47.4.2.3.3 | | Were covers installed on power terminals? | NSTM 079-47.4.2.3.4
NSTM 079-47.4.2.3.6
GSO 320G | | ELECTRICAL DISTRIBUTION | EQUIPMENT | | COMPONENT/SYSTEM | PROPOSED PROCEDURE | | Was electrical distribution equipment securely mounted? Electrical distribution equipment have loose or | NSTM 300-4.3.3
GSO 300D
NSTM 300-4.3.3 | | missing covers? | | | Were control knobs or fasteners missing from electrical equipment? | NSTM 300-4.3.3 | | Was electrical equipment protected from water | NSTM 300-4.4.1 | | intrusion? | NSTM 300-4.4.5 | | Is electrical properly mounted or was it suspended solely by electrical cables? | NSTM 300-4.3.3 | | Were 440 multipurpose outlets properly phased? | NSTM 320-1.4.1 | | Did Standard Navy Receptacles (SNR) and
Multi-Purpose Outlets (MPO) have an interlock
switch or was the switch function such that the plug
could not be removed from an energized receptacle? | NSTM 320-1.4.1 | | Were electrical receptacles broken or damaged? | NSTM 300-2.7.6 | | Were 400HZ AC, 60HZ AC, and DC convenience | GSO 320 | | outlets labeled to prevent equipment being used with the wrong frequency? | | |--|---------------------------------| | SOUND POWERED TELEPHON | IE SYSTEMS | | COMPONENT/SYSTEM | PROPOSED PROCEDURE | | Were any Sound Powered Circuits below 50,000 ohms resistance to ground? | GSO 432I | | Were Sound Powered Call Signal Stations (growlers) inoperative, corroded, damaged or missing parts? | NSTM 430 | | Were Sound Powered Jackboxes improperly labeled, corroded, damaged, or missing parts? | NSTM 430-3.2 | | (INSPECT) LIGHTIN | IG . | | COMPONENT/SYSTEM | PROPOSED
PROCEDURE | | Were darken ship switches operative and adjusted properly? Ship provide list of darken ship switches for survey. | DOD-HDBK-289
NSTM 330-3.6.5 | | Were light fixtures, guards, and covers securely mounted? | NSTM 300-4 | | Were over-sized lamps installed in lighting fixtures? | NSTM 330-2 | | Were light fixtures missing lenses, protective guards, of faceplates? | r NSTM 330-2 | | Were spray-tight fixtures adequately protected against water intrusion? | NSTM 300-4 | | Did diesel module room have adequate lighting? | GSO 331B/332E | | (INSPECT) BATTERY LO | CKERS | | COMPONENT/SYSTEM | PROPOSED
PROCEDURE | | Was a Battery Log maintained? | NSTM 313-2
GSO 313F | | Is there an electrical interlock between exhaust ventilation and battery charger? | 5100.19C C0904
NSTM 313 | | Test ventilation interlocks | 3131/S-2 | | Are Alkaline and Lead Acid Batteries being serviced in the same facility? | GSOF | | Is each locker provided with: - Rubber Gloves and Aprons. - Goggles. - Two battery fillers. | 5100.19
GSO 313F
NSTM 313 | | Two battery test sets.One soda water container. | | | Does the locker contain an eye wash station and a | NSTM 313-2 | |---|------------| | deluge shower? | | | (INSPECT) BATTERY LOCKERS (CON'T) | | |---|-----------------------| | COMPONENT/SYSTEM | PROPOSED
PROCEDURE | | Are battery storage racks greater than 12 inches between tiers? | GSO 313F | | Were battery hold-down clamps provided? | GSO 313F | | Are Acids stored in appropriate protective containers? | GSO 313F | | Are battery charger plugs and jacks marked NEG. and POS.? | GSO 313F | | (INSPECT) MISCELLANEOUS E | QUIPMENT | | COMPONENT/SYSTEM | PROPOSED
PROCEDURE | | Is permanently mounted electrical equipment hardwired to the ships electrical system? | NSTM 330-1 | | Is hardwired electrical equipment permanently mounted? | NSTM 330-1 | | Was more than 1 multi-purpose power strip connected to one isolated receptacle circuit? | NSTM 300-2.7 | | Is electrical equipment mounted on non-conducted surfaces properly grounded? | 3000 / A-5 | | Were Surge Protectors of the approved type? | 3000 / A-4R | | Are portable electric device power cords properly tinned? | 3000 / Q-1R | | Are permanent-type safety precautions, operating instructions, high voltage warning signs, and resuscitation instructions installed where required? | NSTM –H.5, I-2 | | Did electrical connection boxes have knockouts pushed in leaving access holes In the side? | NSTM 300-2. | | Are non-watertight connection boxes being used in engineering spaces? | GSO 300D | | Was rubber matting oil soaked, cracked, punctured, perforated or had imbedded metal or conductive particles? | GSO 634B | | (INSPECT) MISCELLANEOUS EQUIPMENT (CON'T) | | |--|-----------------------------| | COMPONENT/SYSTEM | PROPOSED PROCEDURE | | Did dress ship lights have broken, missing, or incorrect guards? | NSTM 330-1
3000/ R2 | | Were dress ship light receptacles labeled "Dress Ship Light Streamers. Not to be used for any other purpose"? | | | Were panel switches controlling circuits that are de-
energized during darkened ship operation marked
DARKENED SHIP? | NSTM 330-1- | | | NSTM 330-1 | | Had the float charge on the UPS batteries been reduced from 135vdc to 129vdc? | | | | IAW PMS | | Was UPS electronic cabinet bottom sealed to prevent water of oil entry from lower level engine room? | GS0 300D/324D
NSTM 300-4 | # ELECTRICAL (EL) POST-UNDERWAY ### **DD 963** | 22 > 00 | | | | |------------------|--|-----------------------|--| | | OPEN AND INSPECT AS REQUIRED BY THE INSPECTION | | | | COMPONENT/SYSTEM | | PROPOSED
PROCEDURE | | | | | | | # WASTE HEAT BOILERS PRE-UNDERWAY PHASE DD 963 | | Waste Heat Boiler | | | |-----------------|------------------------|-----------------------|--------------------| | C | omponent/Sub-Component | Proposed
Procedure | Accepted Procedure | | Verify proper | lay up | | | | Test safety val | ves/hand easing gear | | | | Test feed wate | r control valve | | | | Test control co | ondenser sw reg valve | | | | Test condensat | te cooler sw reg valve | | | | Test (shift) sw | strainer | | | | Test steam sto | p valve | | | | Test dump val | ve | | | | HOT PLANT | : | | | | Test low contr | ol air pressure | | | | Test high wate | r level alarm | | | | Test low water | level alarm | | | | Test low/low v | vater level alarm | | | | Test low steam | n pressure alarm | | | | Test high stear | n pressure alarm | | | | Soot Blow Bo | | | | | Inspect boiler | casing for leaks | | | | Test gauge gla | ss remote isolation | | | | Inspect gauge | glass lighting | | | | Inspect bottom | blow valves | | | | Inspect gauges | | | | | FEED & CONDENSATE SYSTEM: | | | | |---|--------|-----------------------|-----------------------| | Component/Sub-Component | | Proposed
Procedure | Accepted
Procedure | | Inspect feed pump mechanical seal leakage | | | | | Inspect recirc pump mechanical seal leakage | | | | | Inspect gauges | | | | | Test feed/drain tank high/low alarm | | | | | Test salinity alarms | | | | | Inspect condensate cooler | | | | | Inspect control condenser | | | | | | | DFT | | | Component/Sub-Component | | Proposed
Procedure | Accepted Procedure | | Inspect relief valve | | | | | Test high water alarm | | | | | Test low water alarm | | | | | Test gauge glass isolation | | | | | Test gauge glass lighting | | | | | ADM | INISTI | RATIVE PROG | RAMs | | Component/Sub-Component | | Proposed
Procedure | Accepted
Procedure | | BW/FW records (last 3 months) | | | | | Bottom blow UT records | | | | | Boiler workcenter CSMP | | | | | Oil lab workcenter CSMP | | | | | Boiler related CASREP's | | | | | Boiler related DFS's | | | | | Daily fuel & water report | | | | # MAIN PROPULSION (MP) PRE-UNDERWAY PHASE DD 963 | | MAIN ENGINES | | | |-----------------|---------------------------------------|-----------------------|--------------------| | Co | omponent/Sub-Component | Proposed
Procedure | Accepted Procedure | | Inspect Gas Tu | arbine/Enclosure Assembly | | | | - Gas Generato | or Assembly | | | | - Power Turbin | ne Assembly | | | | - Transfer Gea | r box and components | | | | - Base penetra | * | | | | - Bleed Air Ma | anifold | | | | - Base Enclosu | re Interior | | | | - Base Enclosu | re Exterior | | | | • | hnical directives have been installed | | | | - Inspect LOS | | | | | - Inspect Gage | s/Instrumentation | | | | Inspect Intake | • | | | | | ter Pads/Gaskets/Frames | | | | Test Blow in I | | | | | | (Silencer level) | | | | Inspect Intake | | | | | Inspect Bell M | outh Screen | | | | | Extinguishing System | | | | - Halon/C02 H | Bottles | | | | - Bypass valve | | | | | - Conduit/actu | nation cables | | | | - Test pressure | | | | | - Test time de | · | | | | | gs/check valves | | | | | ir Start and GTM Idle Checks | | | | Conduct HP A | ir Start and GTM Idle Checks | | | | Conduct Meth | anol Test | | | | REDUCTION | REDUCTION GEARS | | |
---|-----------------|-----------|--| | Component/Sub-Component | Proposed | Accepted | | | | Procedure | Procedure | | | Inspect Sump Level | | | | | Inspect Lube Oil Condition | | | | | Inspect Gear Teeth | | | | | Inspect Lube Oil Spray Pattern | | | | | Inspect Casing Interior | | | | | Inspect Oil Flow in SFI's | | | | | Inspect Temperature Gauges | | | | | Inspect Casing Exterior | | | | | Inspect Vent Fog Precipitator | | | | | Inspect Dehumidifier | | | | | Test Shaft Turning Gear | | | | | Test GTM PT Brake Assemblies | | | | | Inspect Input Shaft Seals | | | | | Inspect Attached LO Pump Angle Drive Gear | | | | | Test Attached LO Pump Engage/Disengage | | | | | Test Attached CRP/CPP Pump Engage/Disengage | | | | | Inspect Security Devices | | | | | Inspect Flange Shielding | | | | | Inspect Piping Systems | | | | | LINE SHAFT F | LINE SHAFT BEARINGS | | | |-----------------------------------|---------------------|-----------|--| | Component/Sub-Component | Proposed | Accepted | | | | Procedure | Procedure | | | Inspect Sump Level | | | | | Inspect Sump Drain Valve | | | | | Inspect Seals | | | | | Inspect Thermometer | | | | | Inspect Lubricator | | | | | Inspect Dip Stick | | | | | Inspect Lock Wires | | | | | Inspect Bearing Depth Mic Surface | | | | | Inspect Foundation | | | | | STERN 7 | STERN TUBE SEALS | | | |---------------------------------------|------------------|-----------|--| | Component/Sub-Component | Proposed | Accepted | | | | Procedure | Procedure | | | Inspect Gauges | | | | | Inspect Cooling Water Piping | | | | | Inspect Cooling Water Strainer/Filter | | | | | Test Cooling Water Low Flow Alarm | | | | | Inspect LP Air Supply | | | | | Inspect LP Piping/Hoses/Fittings | | | | | Inspect CO2/N2 Bottles/Piping/Fitting | | | | | Test Inflatable Seal | | | | | Inspect Emergency Flax Packing Kit | | | | | Inspect Backing Ring | | | | | CPP SY | CPP SYSTEMS | | | |--|-------------|-----------|--| | Component/Sub-Component | Proposed | Accepted | | | | Procedure | Procedure | | | HOPM | | | | | - Inspect Flex Hoses | | | | | - Inspect Piping | | | | | - Inspect Gages | | | | | - Inspect Flange Shields | | | | | Test Electric CRP Pump | | | | | - Inspect Motor, Pump | | | | | - Inspect Pump, Motor Driven | | | | | - Inspect Mechanical Seal | | | | | - Inspect Controller, Motor | | | | | Inspect Oil Condition | | | | | Verify Calibration between Consoles and OD box | | | | | Test Slew Rate | | | | | Test Command Pitch Mismatch Alarm | | | | | Test Emergency Pitch Pump | | | | | Attached CRP Pump | | | | | - Inspect Mechanical Seal | | | | | LUBE OIL SYSTEMS | | | |--------------------------------------|-----------------------|-----------------------| | Component/Sub-Component | Proposed
Procedure | Accepted
Procedure | | Test MRG Lube Oil Sequencing | | | | Test Electric MRG Lube Oil Pump | | | | - Inspect Motor | | | | - Inspect Flexible coupling | | | | - Inspect Mechanical seal | | | | - Inspect Valves and piping | | | | - Inspect pump relief valves | | | | Inspect Attached MRG Lube Oil Pump | | | | - Inspect Flexible coupling | | | | - Inspect Mechanical seal | | | | - Inspect Valves and piping | | | | - Inspect pump relief valve | | | | Test/Inspect Lube Oil Strainer | | | | Inspect Temperature Regulating Valve | | | | Inspect Unloading Valve | | | | Inspect Lube Oil Purifier and Heater | | | | FUEL OII | SYSTEMS | | |---|-----------|-----------| | Component/Sub-Component | Proposed | Accepted | | | Procedure | Procedure | | Test Booster Pumps | | | | - Inspect Motor | | | | - Inspect Flexible coupling | | | | - Inspect Mechanical seal | | | | - Inspect Valves and piping | | | | - Inspect pump relief valves | | | | - Inspect Booster Pump Controller | | | | Conduct Fuel Oil Pump Sequence/Logics | | | | Inspect fuel oil service heater | | | | Inspect fuel oil service heater flanges | | | | Test Service Tank Recirc Valves | | | | Test Quick Closing Valves | | | | Test GTM Fuel Oil Solenoid Trip Valves | | | | Inspect instruments | | | | Inspect flexible hoses | | | | Inspect flange shields | | | | Inspect gages and instruments | | | | C | ONTROLS | | |--|-----------|-----------| | Component/Sub-Component | Proposed | Accepted | | | Procedure | Procedure | | Test PACC Alarms and Indicators | | | | Test PLCC Alarms and Indicators | | | | Conduct Torque Computer Test | | | | Test EOT Wrong Direction Alarm | | | | Inspect PACC | | | | Inspect PLCC | | | | Inspect PACC instruments | | | | Inspect PLCC instruments | | | | Test PACC on UPS | | | | Inspect Torsionmeter | | | | Inspect 800 Group Print | | | | Inspect and Test Bell/Data Logger Test Print | | | | BLEED AIR SYSTEMS | | | |--|-----------|-----------| | Component/Sub-Component | Proposed | Accepted | | Component Sub Component | Procedure | Procedure | | Test Motor Air Reg valve | | | | Test Masker Air Transfer Valve | | | | Test Mixing Bypass valve | | | | Test High Temp Bleed valve | | | | Test Masker Cooler inlet valve | | | | Test PRAIRIE Air Cooler inlet valve | | | | Test GTM 16 th Stage Bleed Air valves | | | | Test GTG 14 th Stage Bleed Air valve | | | | Test GTG Start Air Cooler inlet valve | | | | Test HP Start Reg valve | | | | Inspect GTM Bleed Air Reg valves | | | | Inspect GTG Bleed Air Reg valve | | | | Test 3 GTG Bleed Air Isolation valve | | | | Inspect Prairie Air Roto Seal | | | | Inspect Flex hoses | | | | Inspect GTG Start Air Cooler | | | | Inspect Gauges/Instrumentation | | | | Inspect Piping/Fittings | | | | Inspect Masker Air Cooler | | | | Inspect Masker Air Cooler relief vlv | | | | Inspect Prairie Air Cooler | | | | Inspect Prairie Air Cooler relief vlv | | | | Inspect drain orifices | | | | | HULL S | TRUCTURE | | |-----------------------|---------------------|-----------|-----------| | Comp | onent/Sub-Component | Proposed | Accepted | | | ·
 | Procedure | Procedure | | Bilges | | | | | Bilge Suction Scr | eens | | | | Deck Plates | | | | | Equipment Foundations | | | | | Pipe Brackets/Hangers | | | | | Paint and Preserva | ation | | | | FUEL OIL X | KFER SYSTEMS | | |------------------------------------|--------------|-----------| | Component/Sub-Component | Proposed | Accepted | | | Procedure | Procedure | | Inspect Fuel Oil Purifier | | | | Inspect/Test Transfer Pumps | | | | - Inspect Motor | | | | - Inspect Flexible coupling | | | | - Inspect Mechanical seal | | | | - Inspect Valves and piping | | | | - Inspect pump relief valves | | | | - Inspect Transfer Pump Controller | | | | Inspect fuel oil transfer heater | | | | Inspect flexible hoses | | | | Inspect gages and instruments | | - | | Inspect flange shields | | | | | GAS TURBINE GENERATORS | | | |---|------------------------------|-----------------------|--------------------| | Component/Sub-Component | | Proposed
Procedure | Accepted Procedure | | Turbine Enclos | ure | | | | - Inspect Comp | ressor: | | | | - Inspect Acces | sory Gear box: | | | | - Inspect Diffus | ser Case: | | | | - Inspect Comb | - Inspect Combuster: | | | | - Inspect Bleed | - Inspect Bleed Air Manifold | | | | - Inspect Electrical Wiring and Cables. | | | | | - Inspect thermocouple harness and junction box | | | | | - Inspect 5 th and 10 th stage bleed air valves | | | | | - Inspect elastomers | | | | | - Inspect engine side mounts | | | | | - Inspect Enclosure Exterior | | | | | - Inspect Enclosure Interior | | | | | Reduction Gear Enclosure | | | | | - Electrical Wiring and Cables. | | | | | - Inspect reduction gear vent piping | | | | | - Inspect PTO shaft housing speed pick-up | | | | | - Inspect reduction gear lube oil sump level | | | | | - Inspect starter | | | | | Test Fire detection and extinguishing system | | | | | - Halon/C02 Bottles | | | | | - Bypass valve | | | | | - Conduit/actuation cables | | | | | - Test pressure switches | | |---|--| | - Test time delay | | | - Hoses/fittings/check valves | | | Inspect/shift duplex seawater cooling strainers | | | Verify Engine lube oil sump level (23699) | | | Inspect Lube oil coolers (23699/2190) | | | Inspect thermocouple spread and average monitor | | | Inspect Gages/Instruments | | | Test RPM/Temp Channels | | | Test LOCOP Alarms and Indicators | | | Start GTG Verify all Start/Operating limits | | | INTEGRATED CONDITION ASSESSMENT SYSTEM (ICAS) | | | |--|--|--| | | | | | Verify operational status of each workstation | | | | Verify number of required portable data terminals | | | | (PDT) and that they are operational | | | | Verify number of required portable diagnostic aids | | | | (PDA) and that they are operational | | | | Are any critical system errors shown in the system | | | | log? | | | | Ensure data for at least two routes from actual rounds | | | | Ensure data from Data Acquisition devices is being | | | | received as required | | | | Verify Demand Data is received and processed | | | | accurately | | | | Verify database data is received and processed | | | | accurately | | | | Ensure router connections are operating properly | | | | Ensure remote demand data and database data are | | | | available to be viewed. | | | | Verify all required system links are available | | | | Verify all ICAS printers are operational | | | | Verify picture book is available for vibration checks | | | | Verify vibration data is being taken per PMS | | | | Verify vibration disc are installed on all equipment | | | | Conduct vibration surveys on selected equipment | | | | during the full power demonstration | | | | Inspect all cabinet air filters | | | | Inspect all ICAS computer equipment | | | | Inspect computer internal shocks and
fans | | | ### MAIN PROPULSION (MP) UNDERWAY PHASE CG 47 | FULL POWER AND QUICK REVERSAL DEMONSTRATION | | | |---|--------------------------|--| | Demonstrate Auto Plant Mode Logic (Split plant to | EOSS | | | Full Power) | | | | Demonstrate Full Power ahead (1 hour) | PMS/EOSS/POG/9094.1B | | | Demonstrate Quick Reversal Astern | POG/Full Power Memo/EOSS | | | Demonstrate Full Power Astern (15 Min) | POG/Full Power Memo/EOSS | | | Demonstrate Quick Reversal Ahead | POG/Full Power Memo/EOSS | | | LUBE OIL PURIFIER DEMONSTRATION | | | | Demonstrate purifier operation | EOSS/PMS | | | FUEL OIL TRANSFER DEMONSTRATION | | | | Demonstrate fuel oil purifier (s) operation | EOSS/PMS | | | Demonstrate purifier (s)emergency stop capability | EOSS/PMS/Tech manual | | | PRAIRIE/ MASKER/BLEED AIR SYSTEMS DEMONSTRATION | | | | |---|-----------|-----------|--| | | Proposed | Accepted | | | | Procedure | Procedure | | | Verify operation and calibration of all gauges and | | | | | instruments (All applicable classes) | | | | | Test GTM and GTG check valve operation (DD) | | | | | Measure masker air flow rates to emitter belts in | | | | | MER 1 and MER 2 (DD) | | | | | Measure Prairie air flow rates in MER 1 and MER 2 | | | | | (DD) | | | | | Measure masker air flow rates to main strut fairwater | | | | | and main strut rope guard (DD) | | | | | Test GTG bleed air pressure regulating valves (DD) | | | |